Simulation of Diffusion Controlled Intermetallic Formation of Au/Al Interface

Rui Huang¹, Yik Yee Tan², Juergen Walter³, Heinz Pape¹, Xuejun Fan⁴ and Heinrich Koerner¹ ¹Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany ²Infineon Technologies (Malaysia) Sdn. Bhd., Free Trade Zone, Batu Berendam, 75350 Malacca, Malaysia ³Infineon Technologies AG, Wernerwerkstrasse 2, 93049 Regensburg, Germany ⁴Lamar University, Beaumont, Texas 77710, USA Email: <u>rui.huang@infineon.com</u>, Tel: +49 (0)89 234 24929

used as an initial analysis in the subsequent FEM modeling.

Table 2, Material data of Au/Al compounds				
Compound	Composition (at. % Au)	Activation energy (eV)	Diffusion coefficient (µm²/s)	Density (g/cm ³)
Au	84-100			

For intermetallic growth, on the one hand, it is a common belief that during the growth of compounds, the interfacial stresses and stress gradients serves as additional driving force to accelerate

$v = \frac{1}{3V} \frac{dV}{dC}$

multi-component systems with stoichiometric phases," *Acta Materialia*, vol. 58, pp. 2905-2911, 2010.

- [15] J. Svoboda, E. Gamsjäger, F. Fischer, and E. Kozeschnik, "Modeling of kinetics of diffusive phase transformation in binary systems with multiple stoichiometric phases," *Journal of Phase Equilibria and Diffusion*, vol. 27, pp. 622-628, 2006.
- [16] T. C. Illingworth 19(a)-13(tio)-3(n)a-5(8213(llin()-809(I)-3O.)-183(I)-3G(ze)-l(ich)s)(tio)-[(Ko5,e)] 014 9.96 Tf1 0 0